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The a-Kakutani sequence of partitions of Z = [0, 1]

Kakutani introduced a family of sequences of partitions of the unit
interval Z, which depend on a parameter a € (0,1).

The following is the %-Kakutani sequence of partitions:

Theorem (Kakutani, 1975)

For all a € (0,1), the a-Kakutani sequence of partitions is
uniformly distributed in .
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A nice question

In the %—Kakutani sequence, whenever a partition is made, color
the shorter new interval red and the longer new interval blue:

imit of [Redintervals|
1. Does the limit of [Allintervals]

2. Does the limit of Area (Red) exists?

3. In case the limits exist, are they necessarily the same?

exists?



Multiscale substitution schemes



Multiscale substitution schemes

> Labeled prototiles F = (71,...,7,) in RY.



Multiscale substitution schemes

i

» Labeled prototiles 7 = (71,...,7,) in RY.
» Substitution rule assigning to every 7; a list of tiles

SR(Ti) = (a,(-jk)ﬁ:jzl,...,n; k:l,...,kg)

which tile 7;, allowing isometries.



Multiscale substitution schemes

i

» Labeled prototiles 7 = (71,...,7,) in RY.
» Substitution rule assigning to every 7; a list of tiles

SR(Ti) = (af-jk)’ﬁ: j=1,...,n k= 1,...,k,~j>
which tile 7;, allowing isometries.

The substitution rule is naturally extended to labeled tiles a7;.



Multiscale substitution schemes

i

» Labeled prototiles 7 = (71,...,7,) in RY.
» Substitution rule assigning to every 7; a list of tiles

SR(Ti) = (agjk)’ﬁ:j: 1,...,n k= 1,...,k,~j>
which tile 7;, allowing isometries.
The substitution rule is naturally extended to labeled tiles a7;.

Let A (7;) be the set of all labeled tiles which appear by applying
the substitution rule finitely many times on 7; and subsequent tiles.



Multiscale substitution schemes

» Labeled prototiles F = (71,...,7,) in RY.
» Substitution rule assigning to every 7; a list of tiles

SR(T}) = (aﬁj”Tj;j:L.u,n; k= 1,...,k,-j)
which tile 7;, allowing isometries.

The substitution rule is naturally extended to labeled tiles o7;.

Let A (7;) be the set of all labeled tiles which appear by applying
the substitution rule finitely many times on 7; and subsequent tiles.

» Tiles in A(7;) with label j are called tiles of type ;.



Multiscale substitution schemes

» Labeled prototiles F = (71,...,7,) in RY.
» Substitution rule assigning to every 7; a list of tiles

SR(T}) = (aﬁj”Tj;j:L.u,n; k= 1,...,k,-j)
which tile 7;, allowing isometries.

The substitution rule is naturally extended to labeled tiles o7;.

Let A (7;) be the set of all labeled tiles which appear by applying
the substitution rule finitely many times on 7; and subsequent tiles.
» Tiles in A(7;) with label j are called tiles of type ;.
» A scheme is irreducible if A (7;) contains tiles of type j for all
iyj.
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Kakutani sequences of partitions
A partition of a set U C R is a finite covering of U by subsets of
U with pairwise disjoint interiors.
A Kakutani sequence of partitions {7,,} of 7; € F generated by
a substitution scheme on F is defined as following:
1. The trivial partition mo = 7.
2. Partition 7, is defined by substituting all the tiles of maximal
volume in 7,1 according to the substitution rule.

N

Example: The %—Kakutani sequence is generated by a scheme on
F = {Z}, with substitution rule SR (Z) = (17, 37)
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Uniform distribution of sequences of points

Let U C RY be a measurable set of finite positive measure.
For every n € N, let x, be a finite set of points in U.

The sequence {x,} is uniformly distributed in U if for any
continuous function f on U

lim Zf(x):mlw/f(t)dt,
U

n—o0 |Xn’ =

where the integration is with respect to Lebesgue measure.

This is equivalent to the weak-* convergence of the normalized
sampling measures
D Ox

XEXnp

1

Xl

to the normalized Lebesgue measure on U, where J, is the Dirac
measure concentrated at x.
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Uniform distribution of sequences of partitions

Let {yn} be a sequence of partitions of U. A marking sequence
{xn} of {yn} is a sequence of sets of points in U, such that every
set in the partition 7, contains a single point of x,.

The sequence {7,} is uniformly distributed if there exists a
marking sequence of {7,} which is uniformly distributed in U.

Theorem

Let F = (T1,...,Tn) be a set of prototiles and let {m,} be a
Kakutani sequence of partitions of T; € F generated by an
irreducible multiscale substitution scheme on F. Then {mp} is
uniformly distributed in T;.
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there exists mg € N so all tiles in ~yp, are of diameter less than ¢ for
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{Ym} such that for any tile T € A(T;)
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Lemma

Let {ym} be a sequence of partitions of T; € F generated by a
multiscale substitution scheme on F, such that for every € > 0
there exists mg € N so all tiles in ~yp, are of diameter less than ¢ for
all m > mg. Assume there exists a marking sequence {xpm} of
{Ym} such that for any tile T € A(T;)

im H{xmN T}  volT
[ = .
m—co | Xpm| volT;

Then {~ym} is uniformly distributed in Tj.

Counting of tiles is done using directed weighted metric graphs.
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Graphs associated with multiscale substitution schemes

The directed weighted metric graph G = (V, £, /) associated with
a multiscale substitution scheme on F = {71,..., 7} has

> V ={1,...,n}, vertex i € V is associated with prototile 7;.
» For every a7; € SR (T;) there is an edge € € £ such that

» Initial vertex of e is j € V.
» Terminal vertex of € is j € V.
> Weight of ¢ is /(¢) = log L.

o
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Equivalent and normalized schemes
Two schemes on F! = (T1,...,T,) and F2 = (M1, ..., AnTn) are
equivalent if the substitution rules are the same up to rescaling.

» A scheme is called normalized if all tiles are of volume 1.
» Every scheme is equivalent to a unique normalized scheme.
» Equivalent scheme — sliding vertices along edges of graph.

If the scaling constants in a normalized scheme are 3j;, then for
every equivalent scheme the scaling constants are

LA
U=\ VolT; o

The f3j's are called the constants of substitution.
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Paths in G and tiles in A (7))

A path in G is a directed walk on the edges of G which originates
and terminates at vertices of G.

Tiles in A(T;) correspond to paths v € G with initial vertex i € V.

5

If G is associated with a normalized scheme:

1. volT = e /™9 50 vol Ty < volTo <= I(71) > I (72).

2. Let {/n} be the increasing sequence of length of paths in G
with initial vertex i € V. Then tiles of maximal volume in 7,
are associated with paths of length /,,.
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Metric paths in G and tiles in 7,

A metric path in G is a directed walk on edges of G which does
not necessarily originate or terminate at vertices of G.

Tiles in 7, correspond to metric paths of length /,, which originate
at i € V in the graph associated with an equivalent normalized
scheme.
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Metric paths in G and tiles in 7,

A metric path in G is a directed walk on edges of G which does
not necessarily originate or terminate at vertices of G.

Tiles in 7, correspond to metric paths of length /,, which originate
at i € V in the graph associated with an equivalent normalized
scheme.

» Counting tiles in 7, is reduced to counting metric paths of
length /,, in the associated graph.
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Incommensurable and commensurable schemes

A scheme is incommensurable if its associated graph G is
incommensurable, that is there exist two closed paths in G which
are of lengths a, b € R satisfying § ¢ Q.

Incommensurability depends only on a scheme’s equivalence class.
a-Kakutani scheme: For a.e o the scheme is incommensurable.

A commensurable example - Rauzy fractal scheme:

Edge lengths: log 7,2log 7,3 log 7, where 7 = tribonacci constant.
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The incommensurable case - counting tiles

Theorem

Let F = (T1,...,Tn) be a set of prototiles in R and let {m,,} be
a sequence of partitions of a tile T; generated by an irreducible
incommensurable multiscale substitution on F. Then

n  kn
|[{Tiles € mm}| = ZZZ <ﬁhj ) e’ 4o (ed”") ,  m— 00,

j=1 h=1 k=1

independent of i.

Ingredients of proof:
1. Construction of graph associated with equivalent normalized
scheme.
2. Metric path counting results from [Kiro, Smilanskyx2 (2018)].

3. Special properties of graphs which are associated with
substitution schemes.
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The incommensurable case - proof of uniform distribution
of Kakutani sequences

Let T € A(Tj), say T appears at partition 7, and is of type r.

» Let {/,} be as before, and let {7,,} be the Kakutani sequence
of partitions of 7, generated by the same scheme.

» For m> mg

{xm N T} [{Tiles € Frp_mp}|  e?(im=mo)
Ixm|  |{Tiles € mn}| ~  edm

+o(1),

and since e mod = zgg uniform distribution follows.
1
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The incommensurable case - types and their frequencies

The tile counting formulas and the arguments given above imply
additional results for incommensurable schemes:

Theorem

Let {xm (r)} be a marking sequence of tiles of type r in 7wn,. Then
{xm (r)} is uniformly distributed.

Theorem
Under the previous assumptions
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probabilities assigned to outgoing edges [Kiro, Smilanskyx2].
In this model a walker is advancing at a constant speed 1
along the graph, and when arriving to a vertex she chooses an
outgoing edge according to the probabilities.



The incommensurable case - asymptotic volumes

Theorem
The volume of the region covered by tiles of type r in mp, is

> (Z (Bf,k))dlog <ﬁ%k)> qh) +o(1), m—oo

h=1 k=1 ir

Ingredients of proof:

1. Results on random walks on directed weighted graph with
probabilities assigned to outgoing edges [Kiro, Smilanskyx2].
In this model a walker is advancing at a constant speed 1
along the graph, and when arriving to a vertex she chooses an
outgoing edge according to the probabilities.

2. Special properties of graphs and the relevant probabilities
which are associated with substitution schemes.
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A nice answer

Back to the red-blue %—Kakutani sequence:

|[{Red intervals €mm} 2

L. n-!ﬂqoo [{Intervals €mpm}| 3

1 1
§Iog§

2. mlinoovol(U{Red intervals €mp,}) = Tiog I+ Zlog 2"
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If ajj = a € (0,1) for all i and j the scheme is fixed scale.

Example: The Penrose-Robinson substitution scheme:

A 000

This is the classical setup for substitution tilings of R¢:
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The commensurable case - generations sequences

A generations sequence of partitions {J,} of 7; € F generated
by a substitution scheme is defined as following:

1. The trivial partition dg = 7;.

2. Partition dy is defined by substituting all the tiles of in dx_1
according to the substitution rule.

Theorem
Generations sequences of partitions generated by fixed scale
substitution schemes are uniformly distributed.

Follows from the Perron-Frobenius Theorem for irreducible
matrices, and additional standard results on cyclic matrices.
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The commensurable case - Kakutani vs. generations
Lemma
Any Kakutani sequence of partitions generated by a

commensurable scheme is a subsequence of a generations
sequence of partitions generated by some fixed scale scheme.

AAAAAAA
AAAA

Clearly the Kakutani sequence is not a subsequence of the
generations sequence!

The lemma is proved by applying a “slowing down” process.
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Multiscale substitution tilings (with Yaar Solomon)
Let H be a multiscale substitution scheme on F = (7j,...,Tn),
assumed to be incommensurable, irreducible and normalized.

The family of generating patches
f_@[:{Ft(,ﬁ) tERZO}

is defined as follows:
1. At t = 0 the tile 7; is substituted via H.
2. As t increases, the patch is inflated by ef.

3. Tiles are substituted via H as soon as they reach volume 1.

The tiling space Xy is the space of all tilings 7 of RY with the
property that every patch of 7 is a limit of translated sub-patches
of elements of & = UZ;.

Elements of Xy are called multiscale substitution tilings.
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Multiscale substitution tilings and tiling spaces

We show for example:

> Every 7 € Xy is almost repetitive.

The dynamical system (XH,Rd) is minimal.

>

» Tilings 7 € Xy are not BD equivalent to a lattice.

> Various asymptotic frequencies of tile types and scales.
>

Many more beautiful properties! Coming soon...
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