
Kakutani’s Splitting Procedure for Multiscale
Substitution Schemes

Yotam Smilansky (Tel Aviv University, Israel)

Model Sets and Aperiodic Order
Durham University, UK, September 2018



The α-Kakutani sequence of partitions of I = [0, 1]

Kakutani introduced a family of sequences of partitions of the unit
interval I, which depend on a parameter α ∈ (0, 1).

The following is the 1
3 -Kakutani sequence of partitions:

Theorem (Kakutani, 1975)
For all α ∈ (0, 1), the α-Kakutani sequence of partitions is
uniformly distributed in I.



The α-Kakutani sequence of partitions of I = [0, 1]

Kakutani introduced a family of sequences of partitions of the unit
interval I, which depend on a parameter α ∈ (0, 1).

The following is the 1
3 -Kakutani sequence of partitions:

Theorem (Kakutani, 1975)
For all α ∈ (0, 1), the α-Kakutani sequence of partitions is
uniformly distributed in I.



The α-Kakutani sequence of partitions of I = [0, 1]

Kakutani introduced a family of sequences of partitions of the unit
interval I, which depend on a parameter α ∈ (0, 1).

The following is the 1
3 -Kakutani sequence of partitions:

Theorem (Kakutani, 1975)
For all α ∈ (0, 1), the α-Kakutani sequence of partitions is
uniformly distributed in I.



The α-Kakutani sequence of partitions of I = [0, 1]

Kakutani introduced a family of sequences of partitions of the unit
interval I, which depend on a parameter α ∈ (0, 1).

The following is the 1
3 -Kakutani sequence of partitions:

Theorem (Kakutani, 1975)
For all α ∈ (0, 1), the α-Kakutani sequence of partitions is
uniformly distributed in I.



The α-Kakutani sequence of partitions of I = [0, 1]

Kakutani introduced a family of sequences of partitions of the unit
interval I, which depend on a parameter α ∈ (0, 1).

The following is the 1
3 -Kakutani sequence of partitions:

Theorem (Kakutani, 1975)
For all α ∈ (0, 1), the α-Kakutani sequence of partitions is
uniformly distributed in I.



The α-Kakutani sequence of partitions of I = [0, 1]

Kakutani introduced a family of sequences of partitions of the unit
interval I, which depend on a parameter α ∈ (0, 1).

The following is the 1
3 -Kakutani sequence of partitions:

Theorem (Kakutani, 1975)
For all α ∈ (0, 1), the α-Kakutani sequence of partitions is
uniformly distributed in I.



The α-Kakutani sequence of partitions of I = [0, 1]

Kakutani introduced a family of sequences of partitions of the unit
interval I, which depend on a parameter α ∈ (0, 1).

The following is the 1
3 -Kakutani sequence of partitions:

Theorem (Kakutani, 1975)
For all α ∈ (0, 1), the α-Kakutani sequence of partitions is
uniformly distributed in I.



The α-Kakutani sequence of partitions of I = [0, 1]

Kakutani introduced a family of sequences of partitions of the unit
interval I, which depend on a parameter α ∈ (0, 1).

The following is the 1
3 -Kakutani sequence of partitions:

Theorem (Kakutani, 1975)
For all α ∈ (0, 1), the α-Kakutani sequence of partitions is
uniformly distributed in I.



The α-Kakutani sequence of partitions of I = [0, 1]

Kakutani introduced a family of sequences of partitions of the unit
interval I, which depend on a parameter α ∈ (0, 1).

The following is the 1
3 -Kakutani sequence of partitions:

Theorem (Kakutani, 1975)
For all α ∈ (0, 1), the α-Kakutani sequence of partitions is
uniformly distributed in I.



The α-Kakutani sequence of partitions of I = [0, 1]

Kakutani introduced a family of sequences of partitions of the unit
interval I, which depend on a parameter α ∈ (0, 1).

The following is the 1
3 -Kakutani sequence of partitions:

Theorem (Kakutani, 1975)
For all α ∈ (0, 1), the α-Kakutani sequence of partitions is
uniformly distributed in I.



The α-Kakutani sequence of partitions of I = [0, 1]

Kakutani introduced a family of sequences of partitions of the unit
interval I, which depend on a parameter α ∈ (0, 1).

The following is the 1
3 -Kakutani sequence of partitions:

Theorem (Kakutani, 1975)
For all α ∈ (0, 1), the α-Kakutani sequence of partitions is
uniformly distributed in I.



The α-Kakutani sequence of partitions of I = [0, 1]

Kakutani introduced a family of sequences of partitions of the unit
interval I, which depend on a parameter α ∈ (0, 1).

The following is the 1
3 -Kakutani sequence of partitions:

Theorem (Kakutani, 1975)
For all α ∈ (0, 1), the α-Kakutani sequence of partitions is
uniformly distributed in I.



A nice question
In the 1

3 -Kakutani sequence, whenever a partition is made, color
the shorter new interval red and the longer new interval blue:

1. Does the limit of |Red intervals|
|All intervals| exists?

2. Does the limit of Area (Red) exists?
3. In case the limits exist, are they necessarily the same?
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Multiscale substitution schemes

I Labeled prototiles F = (T1, . . . , Tn) in Rd .
I Substitution rule assigning to every Ti a list of tiles

SR (Ti ) =
(
α

(k)
ij Tj : j = 1, . . . , n; k = 1, . . . , kij

)
which tile Ti , allowing isometries.

The substitution rule is naturally extended to labeled tiles αTi .

Let A (Ti) be the set of all labeled tiles which appear by applying
the substitution rule finitely many times on Ti and subsequent tiles.

I Tiles in A (Ti) with label j are called tiles of type j .
I A scheme is irreducible if A (Ti) contains tiles of type j for all

i , j .
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Kakutani sequences of partitions
A partition of a set U ⊂ Rd is a finite covering of U by subsets of
U with pairwise disjoint interiors.

A Kakutani sequence of partitions {πm} of Ti ∈ F generated by
a substitution scheme on F is defined as following:

1. The trivial partition π0 = Ti .
2. Partition πm is defined by substituting all the tiles of maximal

volume in πm−1 according to the substitution rule.

Example: The 1
3 -Kakutani sequence is generated by a scheme on

F = {I}, with substitution rule SR (I) =
(

1
3I,

2
3I
)
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Uniform distribution of sequences of points

Let U ⊂ Rd be a measurable set of finite positive measure.
For every n ∈ N, let xn be a finite set of points in U.

The sequence {xn} is uniformly distributed in U if for any
continuous function f on U

lim
n→∞

1
|xn|

∑
x∈xn

f (x) = 1
volU

∫
U

f (t) dt,

where the integration is with respect to Lebesgue measure.

This is equivalent to the weak-* convergence of the normalized
sampling measures

1
|xn|

∑
x∈xn

δx

to the normalized Lebesgue measure on U, where δx is the Dirac
measure concentrated at x .
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Uniform distribution of sequences of partitions

Let {γn} be a sequence of partitions of U. A marking sequence
{xn} of {γn} is a sequence of sets of points in U, such that every
set in the partition γn contains a single point of xn.

The sequence {γn} is uniformly distributed if there exists a
marking sequence of {γn} which is uniformly distributed in U.

Theorem
Let F = (T1, . . . , Tn) be a set of prototiles and let {πm} be a
Kakutani sequence of partitions of Ti ∈ F generated by an
irreducible multiscale substitution scheme on F . Then {πm} is
uniformly distributed in Ti .
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Tile counting argument implies uniform distribution

Lemma
Let {γm} be a sequence of partitions of Ti ∈ F generated by a
multiscale substitution scheme on F , such that for every ε > 0
there exists m0 ∈ N so all tiles in γm are of diameter less than ε for
all m ≥ m0. Assume there exists a marking sequence {xm} of
{γm} such that for any tile T ∈ A (Ti)

lim
m→∞

|{xm ∩ T}|
|xm|

= volT
volTi

.

Then {γm} is uniformly distributed in Ti .

Counting of tiles is done using directed weighted metric graphs.
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Graphs associated with multiscale substitution schemes

The directed weighted metric graph G = (V, E , l) associated with
a multiscale substitution scheme on F = {T1, . . . , Tn} has

I V = {1, . . . , n}, vertex i ∈ V is associated with prototile Ti .
I For every αTj ∈ SR (Ti) there is an edge ε ∈ E such that

I Initial vertex of ε is i ∈ V.
I Terminal vertex of ε is j ∈ V.
I Weight of ε is l (ε) = log 1

α .
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Equivalent and normalized schemes
Two schemes on F1 = (T1, . . . , Tn) and F2 = (λ1T1, . . . , λnTn) are
equivalent if the substitution rules are the same up to rescaling.

I A scheme is called normalized if all tiles are of volume 1.
I Every scheme is equivalent to a unique normalized scheme.
I Equivalent scheme → sliding vertices along edges of graph.

If the scaling constants in a normalized scheme are βij , then for
every equivalent scheme the scaling constants are

αij =
(

volTi
volTj

)1/d

βij .

The βij ’s are called the constants of substitution.
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Paths in G and tiles in A (Ti)

A path in G is a directed walk on the edges of G which originates
and terminates at vertices of G .

Tiles in A (Ti) correspond to paths γ ∈ G with initial vertex i ∈ V.

If G is associated with a normalized scheme:

1. volT = e−l(γ)d , so volT1 < volT2 ⇐⇒ l (γ1) > l (γ2).
2. Let {lm} be the increasing sequence of length of paths in G

with initial vertex i ∈ V. Then tiles of maximal volume in πm
are associated with paths of length lm.
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Metric paths in G and tiles in πm
A metric path in G is a directed walk on edges of G which does
not necessarily originate or terminate at vertices of G .

Tiles in πm correspond to metric paths of length lm which originate
at i ∈ V in the graph associated with an equivalent normalized
scheme.

I Counting tiles in πm is reduced to counting metric paths of
length lm in the associated graph.
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Incommensurable and commensurable schemes

A scheme is incommensurable if its associated graph G is
incommensurable, that is there exist two closed paths in G which
are of lengths a, b ∈ R satisfying a

b /∈ Q.

Incommensurability depends only on a scheme’s equivalence class.

α-Kakutani scheme: For a.e α the scheme is incommensurable.

A commensurable example - Rauzy fractal scheme:

Edge lengths: log τ, 2 log τ, 3 log τ , where τ = tribonacci constant.
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The incommensurable case - counting tiles

Theorem
Let F = (T1, . . . , Tn) be a set of prototiles in Rd and let {πm} be
a sequence of partitions of a tile Ti generated by an irreducible
incommensurable multiscale substitution on F . Then

|{Tiles ∈ πm}| =
n∑

j=1

n∑
h=1

khj∑
k=1

1−
(
β

(k)
hj

)d

d qhedlm + o
(
edlm
)
, m→∞,

independent of i .

Ingredients of proof:

1. Construction of graph associated with equivalent normalized
scheme.

2. Metric path counting results from [Kiro, Smilansky×2 (2018)].
3. Special properties of graphs which are associated with

substitution schemes.
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The incommensurable case - proof of uniform distribution
of Kakutani sequences

Let T ∈ A (Ti), say T appears at partition πm0 and is of type r .

I Let {lm} be as before, and let {π̃m} be the Kakutani sequence
of partitions of Tr generated by the same scheme.

I For m > m0

|{xm ∩ T}|
|xm|

= |{Tiles ∈ π̃m−m0}|
|{Tiles ∈ πm}|

= ed(lm−lm0)
edlm + o (1) ,

and since e−lm0 d = volT
volTi

uniform distribution follows.
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The incommensurable case - types and their frequencies

The tile counting formulas and the arguments given above imply
additional results for incommensurable schemes:

Theorem
Let {xm (r)} be a marking sequence of tiles of type r in πm. Then
{xm (r)} is uniformly distributed.

Theorem
Under the previous assumptions
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The incommensurable case - asymptotic volumes

Theorem
The volume of the region covered by tiles of type r in πm is

n∑
h=1

( khr∑
k=1

(
β

(k)
ir

)d
log
(

1
β

(k)
ir

)
qh

)
+ o (1) , m→∞

Ingredients of proof:

1. Results on random walks on directed weighted graph with
probabilities assigned to outgoing edges [Kiro, Smilansky×2].
In this model a walker is advancing at a constant speed 1
along the graph, and when arriving to a vertex she chooses an
outgoing edge according to the probabilities.

2. Special properties of graphs and the relevant probabilities
which are associated with substitution schemes.
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A nice answer
Back to the red-blue 1

3 -Kakutani sequence:

1. lim
m→∞

|{Red intervals ∈πm}|
|{Intervals ∈πm}|

= 2
3 .

2. lim
m→∞

vol (
⋃
{Red intervals ∈πm}) =

1
3 log 1

3
1
3 log 1

3 + 2
3 log 2
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The commensurable case - fixed scale schemes

If αij = α ∈ (0, 1) for all i and j the scheme is fixed scale.

Example: The Penrose-Robinson substitution scheme:

This is the classical setup for substitution tilings of Rd :
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The commensurable case - generations sequences

A generations sequence of partitions {δk} of Ti ∈ F generated
by a substitution scheme is defined as following:

1. The trivial partition δ0 = Ti .
2. Partition δk is defined by substituting all the tiles of in δk−1

according to the substitution rule.

Theorem
Generations sequences of partitions generated by fixed scale
substitution schemes are uniformly distributed.

Follows from the Perron-Frobenius Theorem for irreducible
matrices, and additional standard results on cyclic matrices.
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matrices, and additional standard results on cyclic matrices.



The commensurable case - Kakutani vs. generations
Lemma
Any Kakutani sequence of partitions generated by a
commensurable scheme is a subsequence of a generations
sequence of partitions generated by some fixed scale scheme.

Clearly the Kakutani sequence is not a subsequence of the
generations sequence!

The lemma is proved by applying a “slowing down” process.
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Multiscale substitution tilings (with Yaar Solomon)

Let H be a multiscale substitution scheme on F = (Ti , . . . , Tn),
assumed to be incommensurable, irreducible and normalized.

The family of generating patches

Pi = {Ft (Ti) : t ∈ R≥0}

is defined as follows:

1. At t = 0 the tile Ti is substituted via H.
2. As t increases, the patch is inflated by et .
3. Tiles are substituted via H as soon as they reach volume 1.

The tiling space XH is the space of all tilings τ of Rd with the
property that every patch of τ is a limit of translated sub-patches
of elements of P = ∪Pi .

Elements of XH are called multiscale substitution tilings.
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Multiscale substitution tilings and tiling spaces

We show for example:

I Every τ ∈ XH is almost repetitive.
I The dynamical system

(
XH ,Rd

)
is minimal.

I Tilings τ ∈ XH are not BD equivalent to a lattice.
I Various asymptotic frequencies of tile types and scales.
I Many more beautiful properties! Coming soon...
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