Kakutani's Splitting Procedure for Multiscale Substitution Schemes

Yotam Smilansky (Tel Aviv University, Israel)

Model Sets and Aperiodic Order Durham University, UK, September 2018

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

The following is the $\frac{1}{3}$ -Kakutani sequence of partitions:

Theorem (Kakutani, 1975)

For all $\alpha \in (0,1)$, the α -Kakutani sequence of partitions is uniformly distributed in \mathcal{I} .

In the $\frac{1}{3}$ -Kakutani sequence, whenever a partition is made, color the shorter new interval red and the longer new interval blue:

|------I

In the $\frac{1}{3}$ -Kakutani sequence, whenever a partition is made, color the shorter new interval red and the longer new interval blue:

3. In case the limits exist, are they necessarily the same?

• Labeled prototiles $\mathcal{F} = (\mathcal{T}_1, \ldots, \mathcal{T}_n)$ in \mathbb{R}^d .

• Labeled prototiles $\mathcal{F} = (\mathcal{T}_1, \ldots, \mathcal{T}_n)$ in \mathbb{R}^d .

• Substitution rule assigning to every T_i a list of tiles

$$\mathcal{SR}\left(\mathcal{T}_{i}
ight)=\left(lpha_{ij}^{\left(k
ight)}\mathcal{T}_{j}:\,j=1,\ldots,$$
 n; $k=1,\ldots,k_{ij}
ight)$

which tile \mathcal{T}_i , allowing isometries.

▶ Labeled prototiles $\mathcal{F} = (\mathcal{T}_1, \ldots, \mathcal{T}_n)$ in \mathbb{R}^d .

Substitution rule assigning to every T_i a list of tiles

$$\mathcal{SR}\left(\mathcal{T}_{i}
ight)=\left(lpha_{ij}^{\left(k
ight)}\mathcal{T}_{j}:\,j=1,\ldots,$$
 n; $k=1,\ldots,k_{ij}
ight)$

which tile \mathcal{T}_i , allowing isometries.

The substitution rule is naturally extended to labeled tiles αT_i .

▶ Labeled prototiles $\mathcal{F} = (\mathcal{T}_1, \ldots, \mathcal{T}_n)$ in \mathbb{R}^d .

• Substitution rule assigning to every T_i a list of tiles

$$\mathcal{SR}\left(\mathcal{T}_{i}
ight)=\left(lpha_{ij}^{\left(k
ight)}\mathcal{T}_{j}:\,j=1,\ldots,$$
 n; $k=1,\ldots,k_{ij}
ight)$

which tile T_i , allowing isometries.

The substitution rule is naturally extended to labeled tiles αT_i .

Let $\mathcal{A}(\mathcal{T}_i)$ be the set of all labeled tiles which appear by applying the substitution rule finitely many times on \mathcal{T}_i and subsequent tiles.

▶ Labeled prototiles $\mathcal{F} = (\mathcal{T}_1, \ldots, \mathcal{T}_n)$ in \mathbb{R}^d .

• Substitution rule assigning to every T_i a list of tiles

$$\mathcal{SR}\left(\mathcal{T}_{i}
ight)=\left(lpha_{ij}^{\left(k
ight)}\mathcal{T}_{j}:\,j=1,\ldots,$$
 n; $k=1,\ldots,k_{ij}
ight)$

which tile \mathcal{T}_i , allowing isometries.

The substitution rule is naturally extended to labeled tiles αT_i .

Let $\mathcal{A}(\mathcal{T}_i)$ be the set of all labeled tiles which appear by applying the substitution rule finitely many times on \mathcal{T}_i and subsequent tiles.

Tiles in $\mathcal{A}(\mathcal{T}_i)$ with label *j* are called **tiles of type** *j*.

▶ Labeled prototiles $\mathcal{F} = (\mathcal{T}_1, \ldots, \mathcal{T}_n)$ in \mathbb{R}^d .

• Substitution rule assigning to every T_i a list of tiles

$$\mathcal{SR}\left(\mathcal{T}_{i}
ight)=\left(lpha_{ij}^{\left(k
ight)}\mathcal{T}_{j}:\,j=1,\ldots,$$
 n; $k=1,\ldots,k_{ij}
ight)$

which tile \mathcal{T}_i , allowing isometries.

The substitution rule is naturally extended to labeled tiles αT_i .

Let $\mathcal{A}(\mathcal{T}_i)$ be the set of all labeled tiles which appear by applying the substitution rule finitely many times on \mathcal{T}_i and subsequent tiles.

- Tiles in $\mathcal{A}(\mathcal{T}_i)$ with label *j* are called **tiles of type** *j*.
- ► A scheme is **irreducible** if A (T_i) contains tiles of type j for all i, j.

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

A Kakutani sequence of partitions $\{\pi_m\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme on \mathcal{F} is defined as following:

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

A Kakutani sequence of partitions $\{\pi_m\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme on \mathcal{F} is defined as following:

1. The trivial partition $\pi_0 = \mathcal{T}_i$.

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

A Kakutani sequence of partitions $\{\pi_m\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme on \mathcal{F} is defined as following:

1. The trivial partition $\pi_0 = \mathcal{T}_i$.

2. Partition π_m is defined by substituting all the tiles of maximal volume in π_{m-1} according to the substitution rule.

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

A Kakutani sequence of partitions $\{\pi_m\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme on \mathcal{F} is defined as following:

1. The trivial partition $\pi_0 = \mathcal{T}_i$.

2. Partition π_m is defined by substituting all the tiles of maximal volume in π_{m-1} according to the substitution rule.

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

A Kakutani sequence of partitions $\{\pi_m\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme on \mathcal{F} is defined as following:

- 1. The trivial partition $\pi_0 = \mathcal{T}_i$.
- 2. Partition π_m is defined by substituting all the tiles of maximal volume in π_{m-1} according to the substitution rule.

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

A Kakutani sequence of partitions $\{\pi_m\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme on \mathcal{F} is defined as following:

- 1. The trivial partition $\pi_0 = \mathcal{T}_i$.
- 2. Partition π_m is defined by substituting all the tiles of maximal volume in π_{m-1} according to the substitution rule.

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

A Kakutani sequence of partitions $\{\pi_m\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme on \mathcal{F} is defined as following:

1. The trivial partition $\pi_0 = \mathcal{T}_i$.

2. Partition π_m is defined by substituting all the tiles of maximal volume in π_{m-1} according to the substitution rule.

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

A Kakutani sequence of partitions $\{\pi_m\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme on \mathcal{F} is defined as following:

1. The trivial partition $\pi_0 = \mathcal{T}_i$.

2. Partition π_m is defined by substituting all the tiles of maximal volume in π_{m-1} according to the substitution rule.

Kakutani sequences of partitions

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

A Kakutani sequence of partitions $\{\pi_m\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme on \mathcal{F} is defined as following:

1. The trivial partition $\pi_0 = \mathcal{T}_i$.

2. Partition π_m is defined by substituting all the tiles of maximal volume in π_{m-1} according to the substitution rule.

Kakutani sequences of partitions

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

A Kakutani sequence of partitions $\{\pi_m\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme on \mathcal{F} is defined as following:

1. The trivial partition $\pi_0 = \mathcal{T}_i$.

2. Partition π_m is defined by substituting all the tiles of maximal volume in π_{m-1} according to the substitution rule.

Kakutani sequences of partitions

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

A Kakutani sequence of partitions $\{\pi_m\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme on \mathcal{F} is defined as following:

1. The trivial partition $\pi_0 = \mathcal{T}_i$.

2. Partition π_m is defined by substituting all the tiles of maximal volume in π_{m-1} according to the substitution rule.

Example: The $\frac{1}{3}$ -Kakutani sequence is generated by a scheme on $\mathcal{F} = \{\mathcal{I}\}$, with substitution rule $\mathcal{SR}(\mathcal{I}) = \left(\frac{1}{3}\mathcal{I}, \frac{2}{3}\mathcal{I}\right)$

Let $U \subset \mathbb{R}^d$ be a measurable set of finite positive measure. For every $n \in \mathbb{N}$, let x_n be a finite set of points in U.

Let $U \subset \mathbb{R}^d$ be a measurable set of finite positive measure. For every $n \in \mathbb{N}$, let x_n be a finite set of points in U.

The sequence $\{x_n\}$ is **uniformly distributed** in U if for any continuous function f on U

$$\lim_{n\to\infty}\frac{1}{|x_n|}\sum_{x\in x_n}f(x)=\frac{1}{\operatorname{vol} U}\int_U f(t)\,dt,$$

where the integration is with respect to Lebesgue measure.

Let $U \subset \mathbb{R}^d$ be a measurable set of finite positive measure. For every $n \in \mathbb{N}$, let x_n be a finite set of points in U.

The sequence $\{x_n\}$ is **uniformly distributed** in U if for any continuous function f on U

$$\lim_{n\to\infty}\frac{1}{|x_n|}\sum_{x\in x_n}f(x)=\frac{1}{\operatorname{vol} U}\int_U f(t)\,dt,$$

where the integration is with respect to Lebesgue measure.

This is equivalent to the weak-* convergence of the normalized sampling measures

$$\frac{1}{|x_n|}\sum_{x\in x_n}\delta_x$$

to the normalized Lebesgue measure on U, where $\delta_{\rm x}$ is the Dirac measure concentrated at ${\rm x}.$

Let $\{\gamma_n\}$ be a sequence of partitions of U. A marking sequence $\{x_n\}$ of $\{\gamma_n\}$ is a sequence of sets of points in U, such that every set in the partition γ_n contains a single point of x_n .

Let $\{\gamma_n\}$ be a sequence of partitions of U. A marking sequence $\{x_n\}$ of $\{\gamma_n\}$ is a sequence of sets of points in U, such that every set in the partition γ_n contains a single point of x_n .

Let $\{\gamma_n\}$ be a sequence of partitions of U. A marking sequence $\{x_n\}$ of $\{\gamma_n\}$ is a sequence of sets of points in U, such that every set in the partition γ_n contains a single point of x_n .

The sequence $\{\gamma_n\}$ is **uniformly distributed** if there exists a marking sequence of $\{\gamma_n\}$ which is uniformly distributed in U.

Let $\{\gamma_n\}$ be a sequence of partitions of U. A marking sequence $\{x_n\}$ of $\{\gamma_n\}$ is a sequence of sets of points in U, such that every set in the partition γ_n contains a single point of x_n .

The sequence $\{\gamma_n\}$ is **uniformly distributed** if there exists a marking sequence of $\{\gamma_n\}$ which is uniformly distributed in U.

Theorem

Let $\mathcal{F} = (\mathcal{T}_1, \ldots, \mathcal{T}_n)$ be a set of prototiles and let $\{\pi_m\}$ be a Kakutani sequence of partitions of $\mathcal{T}_i \in \mathcal{F}$ generated by an irreducible multiscale substitution scheme on \mathcal{F} . Then $\{\pi_m\}$ is uniformly distributed in \mathcal{T}_i .

Tile counting argument implies uniform distribution

Lemma

Let $\{\gamma_m\}$ be a sequence of partitions of $\mathcal{T}_i \in \mathcal{F}$ generated by a multiscale substitution scheme on \mathcal{F} , such that for every $\varepsilon > 0$ there exists $m_0 \in \mathbb{N}$ so all tiles in γ_m are of diameter less than ε for all $m \ge m_0$. Assume there exists a marking sequence $\{x_m\}$ of $\{\gamma_m\}$ such that for any tile $T \in \mathcal{A}(\mathcal{T}_i)$

$$\lim_{m\to\infty}\frac{|\{x_m\cap T\}|}{|x_m|}=\frac{\mathrm{vol}\,T}{\mathrm{vol}\,\mathcal{T}_i}.$$

Then $\{\gamma_m\}$ is uniformly distributed in \mathcal{T}_i .

Tile counting argument implies uniform distribution

Lemma

Let $\{\gamma_m\}$ be a sequence of partitions of $\mathcal{T}_i \in \mathcal{F}$ generated by a multiscale substitution scheme on \mathcal{F} , such that for every $\varepsilon > 0$ there exists $m_0 \in \mathbb{N}$ so all tiles in γ_m are of diameter less than ε for all $m \ge m_0$. Assume there exists a marking sequence $\{x_m\}$ of $\{\gamma_m\}$ such that for any tile $T \in \mathcal{A}(\mathcal{T}_i)$

$$\lim_{m\to\infty}\frac{|\{x_m\cap T\}|}{|x_m|}=\frac{\mathrm{vol}\,T}{\mathrm{vol}\,\mathcal{T}_i}.$$

Then $\{\gamma_m\}$ is uniformly distributed in \mathcal{T}_i .

Counting of tiles is done using directed weighted metric graphs.

The directed weighted metric graph $G = (\mathcal{V}, \mathcal{E}, I)$ associated with a multiscale substitution scheme on $\mathcal{F} = \{\mathcal{T}_1, \dots, \mathcal{T}_n\}$ has

The directed weighted metric graph $G = (\mathcal{V}, \mathcal{E}, I)$ associated with a multiscale substitution scheme on $\mathcal{F} = \{\mathcal{T}_1, \dots, \mathcal{T}_n\}$ has

▶ $\mathcal{V} = \{1, ..., n\}$, vertex $i \in \mathcal{V}$ is associated with prototile \mathcal{T}_i .

The directed weighted metric graph $G = (\mathcal{V}, \mathcal{E}, I)$ associated with a multiscale substitution scheme on $\mathcal{F} = \{\mathcal{T}_1, \dots, \mathcal{T}_n\}$ has

- ▶ $\mathcal{V} = \{1, ..., n\}$, vertex $i \in \mathcal{V}$ is associated with prototile \mathcal{T}_i .
- ▶ For every $\alpha T_j \in SR(T_i)$ there is an edge $\varepsilon \in \mathcal{E}$ such that

The directed weighted metric graph $G = (\mathcal{V}, \mathcal{E}, I)$ associated with a multiscale substitution scheme on $\mathcal{F} = \{\mathcal{T}_1, \dots, \mathcal{T}_n\}$ has

▶ $\mathcal{V} = \{1, ..., n\}$, vertex $i \in \mathcal{V}$ is associated with prototile \mathcal{T}_i .

► For every $\alpha T_j \in SR(T_i)$ there is an edge $\varepsilon \in \mathcal{E}$ such that

lnitial vertex of ε is $i \in \mathcal{V}$.

The directed weighted metric graph $G = (\mathcal{V}, \mathcal{E}, I)$ associated with a multiscale substitution scheme on $\mathcal{F} = \{\mathcal{T}_1, \dots, \mathcal{T}_n\}$ has

▶ $\mathcal{V} = \{1, ..., n\}$, vertex $i \in \mathcal{V}$ is associated with prototile \mathcal{T}_i .

▶ For every $\alpha T_j \in SR(T_i)$ there is an edge $\varepsilon \in \mathcal{E}$ such that

lnitial vertex of ε is $i \in \mathcal{V}$.

• Terminal vertex of ε is $j \in \mathcal{V}$.

The directed weighted metric graph $G = (\mathcal{V}, \mathcal{E}, I)$ associated with a multiscale substitution scheme on $\mathcal{F} = \{\mathcal{T}_1, \dots, \mathcal{T}_n\}$ has

▶ $\mathcal{V} = \{1, ..., n\}$, vertex $i \in \mathcal{V}$ is associated with prototile \mathcal{T}_i .

▶ For every $\alpha T_j \in SR(T_i)$ there is an edge $\varepsilon \in \mathcal{E}$ such that

lnitial vertex of ε is $i \in \mathcal{V}$.

• Terminal vertex of
$$\varepsilon$$
 is $j \in \mathcal{V}$.

• Weight of
$$\varepsilon$$
 is $I(\varepsilon) = \log \frac{1}{\alpha}$.

The directed weighted metric graph $G = (\mathcal{V}, \mathcal{E}, I)$ associated with a multiscale substitution scheme on $\mathcal{F} = \{\mathcal{T}_1, \dots, \mathcal{T}_n\}$ has

▶ $\mathcal{V} = \{1, ..., n\}$, vertex $i \in \mathcal{V}$ is associated with prototile \mathcal{T}_i .

▶ For every $\alpha T_j \in SR(T_i)$ there is an edge $\varepsilon \in \mathcal{E}$ such that

- lnitial vertex of ε is $i \in \mathcal{V}$.
- Terminal vertex of ε is $j \in \mathcal{V}$.

• Weight of
$$\varepsilon$$
 is $I(\varepsilon) = \log \frac{1}{\alpha}$.

Two schemes on $\mathcal{F}^1 = (\mathcal{T}_1, \dots, \mathcal{T}_n)$ and $\mathcal{F}^2 = (\lambda_1 \mathcal{T}_1, \dots, \lambda_n \mathcal{T}_n)$ are **equivalent** if the substitution rules are the same up to rescaling.

Two schemes on $\mathcal{F}^1 = (\mathcal{T}_1, \dots, \mathcal{T}_n)$ and $\mathcal{F}^2 = (\lambda_1 \mathcal{T}_1, \dots, \lambda_n \mathcal{T}_n)$ are **equivalent** if the substitution rules are the same up to rescaling.

• A scheme is called **normalized** if all tiles are of volume 1.

Two schemes on $\mathcal{F}^1 = (\mathcal{T}_1, \dots, \mathcal{T}_n)$ and $\mathcal{F}^2 = (\lambda_1 \mathcal{T}_1, \dots, \lambda_n \mathcal{T}_n)$ are **equivalent** if the substitution rules are the same up to rescaling.

- A scheme is called **normalized** if all tiles are of volume 1.
- Every scheme is equivalent to a unique normalized scheme.

Two schemes on $\mathcal{F}^1 = (\mathcal{T}_1, \dots, \mathcal{T}_n)$ and $\mathcal{F}^2 = (\lambda_1 \mathcal{T}_1, \dots, \lambda_n \mathcal{T}_n)$ are **equivalent** if the substitution rules are the same up to rescaling.

- A scheme is called **normalized** if all tiles are of volume 1.
- Every scheme is equivalent to a unique normalized scheme.
- Equivalent scheme \rightarrow sliding vertices along edges of graph.

Two schemes on $\mathcal{F}^1 = (\mathcal{T}_1, \dots, \mathcal{T}_n)$ and $\mathcal{F}^2 = (\lambda_1 \mathcal{T}_1, \dots, \lambda_n \mathcal{T}_n)$ are **equivalent** if the substitution rules are the same up to rescaling.

- A scheme is called **normalized** if all tiles are of volume 1.
- Every scheme is equivalent to a unique normalized scheme.
- Equivalent scheme \rightarrow sliding vertices along edges of graph.

If the scaling constants in a normalized scheme are $\beta_{ij},$ then for every equivalent scheme the scaling constants are

$$\alpha_{ij} = \left(\frac{\mathrm{vol}\mathcal{T}_i}{\mathrm{vol}\mathcal{T}_j}\right)^{1/d} \beta_{ij}.$$

Two schemes on $\mathcal{F}^1 = (\mathcal{T}_1, \dots, \mathcal{T}_n)$ and $\mathcal{F}^2 = (\lambda_1 \mathcal{T}_1, \dots, \lambda_n \mathcal{T}_n)$ are **equivalent** if the substitution rules are the same up to rescaling.

- A scheme is called **normalized** if all tiles are of volume 1.
- Every scheme is equivalent to a unique normalized scheme.
- Equivalent scheme \rightarrow sliding vertices along edges of graph.

If the scaling constants in a normalized scheme are $\beta_{ij},$ then for every equivalent scheme the scaling constants are

$$\alpha_{ij} = \left(\frac{\mathrm{vol}\mathcal{T}_i}{\mathrm{vol}\mathcal{T}_j}\right)^{1/d} \beta_{ij}.$$

The β_{ij} 's are called the **constants of substitution**.

A **path** in G is a directed walk on the edges of G which originates and terminates at vertices of G.

A **path** in G is a directed walk on the edges of G which originates and terminates at vertices of G.

A **path** in G is a directed walk on the edges of G which originates and terminates at vertices of G.

A **path** in G is a directed walk on the edges of G which originates and terminates at vertices of G.

A **path** in G is a directed walk on the edges of G which originates and terminates at vertices of G.

A **path** in G is a directed walk on the edges of G which originates and terminates at vertices of G.

A **path** in G is a directed walk on the edges of G which originates and terminates at vertices of G.

A **path** in G is a directed walk on the edges of G which originates and terminates at vertices of G.

Tiles in $\mathcal{A}(\mathcal{T}_i)$ correspond to paths $\gamma \in G$ with initial vertex $i \in \mathcal{V}$.

1. $\operatorname{vol} T = e^{-l(\gamma)d}$, so $\operatorname{vol} T_1 < \operatorname{vol} T_2 \iff l(\gamma_1) > l(\gamma_2)$.

A **path** in G is a directed walk on the edges of G which originates and terminates at vertices of G.

Tiles in $\mathcal{A}(\mathcal{T}_i)$ correspond to paths $\gamma \in G$ with initial vertex $i \in \mathcal{V}$.

If G is associated with a normalized scheme:

- 1. $\operatorname{vol} T = e^{-I(\gamma)d}$, so $\operatorname{vol} T_1 < \operatorname{vol} T_2 \iff I(\gamma_1) > I(\gamma_2)$.
- 2. Let $\{I_m\}$ be the increasing sequence of length of paths in G with initial vertex $i \in \mathcal{V}$. Then tiles of maximal volume in π_m are associated with paths of length I_m .

Metric paths in G and tiles in π_m

A **metric path** in G is a directed walk on edges of G which does not necessarily originate or terminate at vertices of G.

Metric paths in G and tiles in π_m

A **metric path** in G is a directed walk on edges of G which does not necessarily originate or terminate at vertices of G.

Tiles in π_m correspond to metric paths of length I_m which originate at $i \in \mathcal{V}$ in the graph associated with an equivalent normalized scheme.
A **metric path** in G is a directed walk on edges of G which does not necessarily originate or terminate at vertices of G.

Tiles in π_m correspond to metric paths of length I_m which originate at $i \in \mathcal{V}$ in the graph associated with an equivalent normalized scheme.

A **metric path** in G is a directed walk on edges of G which does not necessarily originate or terminate at vertices of G.

Tiles in π_m correspond to metric paths of length I_m which originate at $i \in \mathcal{V}$ in the graph associated with an equivalent normalized scheme.

A **metric path** in G is a directed walk on edges of G which does not necessarily originate or terminate at vertices of G.

Tiles in π_m correspond to metric paths of length I_m which originate at $i \in \mathcal{V}$ in the graph associated with an equivalent normalized scheme.

A **metric path** in G is a directed walk on edges of G which does not necessarily originate or terminate at vertices of G.

Tiles in π_m correspond to metric paths of length I_m which originate at $i \in \mathcal{V}$ in the graph associated with an equivalent normalized scheme.

Counting tiles in π_m is reduced to counting metric paths of length l_m in the associated graph.

A scheme is **incommensurable** if its associated graph *G* is incommensurable, that is there exist two closed paths in *G* which are of lengths $a, b \in \mathbb{R}$ satisfying $\frac{a}{b} \notin \mathbb{Q}$.

A scheme is **incommensurable** if its associated graph *G* is incommensurable, that is there exist two closed paths in *G* which are of lengths $a, b \in \mathbb{R}$ satisfying $\frac{a}{b} \notin \mathbb{Q}$.

Incommensurability depends only on a scheme's equivalence class.

A scheme is **incommensurable** if its associated graph *G* is incommensurable, that is there exist two closed paths in *G* which are of lengths $a, b \in \mathbb{R}$ satisfying $\frac{a}{b} \notin \mathbb{Q}$.

Incommensurability depends only on a scheme's equivalence class.

 $\alpha\text{-}\mathbf{Kakutani}$ scheme: For a.e α the scheme is incommensurable.

A scheme is **incommensurable** if its associated graph *G* is incommensurable, that is there exist two closed paths in *G* which are of lengths $a, b \in \mathbb{R}$ satisfying $\frac{a}{b} \notin \mathbb{Q}$.

Incommensurability depends only on a scheme's equivalence class. α -Kakutani scheme: For a.e α the scheme is incommensurable. A commensurable example - Rauzy fractal scheme:

Edge lengths: $\log \tau$, $2 \log \tau$, $3 \log \tau$, where $\tau =$ tribonacci constant.

Theorem Let $\mathcal{F} = (\mathcal{T}_1, \ldots, \mathcal{T}_n)$ be a set of prototiles in \mathbb{R}^d and let $\{\pi_m\}$ be a sequence of partitions of a tile \mathcal{T}_i generated by an irreducible incommensurable multiscale substitution on \mathcal{F} . Then

$$|\{\text{Tiles} \in \pi_m\}| = \sum_{j=1}^n \sum_{h=1}^n \sum_{k=1}^{k_{hj}} \frac{1 - \left(\beta_{hj}^{(k)}\right)^d}{d} q_h e^{dl_m} + o\left(e^{dl_m}\right), \quad m \to \infty,$$

independent of i.

Theorem Let $\mathcal{F} = (\mathcal{T}_1, \ldots, \mathcal{T}_n)$ be a set of prototiles in \mathbb{R}^d and let $\{\pi_m\}$ be a sequence of partitions of a tile \mathcal{T}_i generated by an irreducible incommensurable multiscale substitution on \mathcal{F} . Then

$$|\{\text{Tiles} \in \pi_m\}| = \sum_{j=1}^n \sum_{h=1}^n \sum_{k=1}^{k_{hj}} \frac{1 - \left(\beta_{hj}^{(k)}\right)^d}{d} q_h e^{dl_m} + o\left(e^{dl_m}\right), \quad m \to \infty,$$

independent of i.

Ingredients of proof:

Theorem Let $\mathcal{F} = (\mathcal{T}_1, \ldots, \mathcal{T}_n)$ be a set of prototiles in \mathbb{R}^d and let $\{\pi_m\}$ be a sequence of partitions of a tile \mathcal{T}_i generated by an irreducible incommensurable multiscale substitution on \mathcal{F} . Then

$$|\{\text{Tiles} \in \pi_m\}| = \sum_{j=1}^n \sum_{h=1}^n \sum_{k=1}^{k_{hj}} \frac{1 - \left(\beta_{hj}^{(k)}\right)^d}{d} q_h e^{dl_m} + o\left(e^{dl_m}\right), \quad m \to \infty,$$

independent of i.

Ingredients of proof:

1. Construction of graph associated with equivalent normalized scheme.

Theorem

Let $\mathcal{F} = (\mathcal{T}_1, \ldots, \mathcal{T}_n)$ be a set of prototiles in \mathbb{R}^d and let $\{\pi_m\}$ be a sequence of partitions of a tile \mathcal{T}_i generated by an irreducible incommensurable multiscale substitution on \mathcal{F} . Then

$$|\{\mathrm{Tiles}\in\pi_m\}|=\sum_{j=1}^n\sum_{h=1}^n\sum_{k=1}^{k_{hj}}rac{1-\left(eta_{hj}^{(k)}
ight)^d}{d}q_he^{dl_m}+o\left(e^{dl_m}
ight),\quad m
ightarrow\infty,$$

independent of i.

Ingredients of proof:

- 1. Construction of graph associated with equivalent normalized scheme.
- 2. Metric path counting results from [Kiro, Smilansky×2 (2018)].

Theorem

Let $\mathcal{F} = (\mathcal{T}_1, \ldots, \mathcal{T}_n)$ be a set of prototiles in \mathbb{R}^d and let $\{\pi_m\}$ be a sequence of partitions of a tile \mathcal{T}_i generated by an irreducible incommensurable multiscale substitution on \mathcal{F} . Then

$$|\{\mathrm{Tiles}\in\pi_m\}|=\sum_{j=1}^n\sum_{h=1}^n\sum_{k=1}^{k_{hj}}rac{1-\left(eta_{hj}^{(k)}
ight)^d}{d}q_he^{dl_m}+o\left(e^{dl_m}
ight),\quad m
ightarrow\infty,$$

independent of i.

Ingredients of proof:

- 1. Construction of graph associated with equivalent normalized scheme.
- 2. Metric path counting results from [Kiro, Smilansky×2 (2018)].
- Special properties of graphs which are associated with substitution schemes.

The incommensurable case - proof of uniform distribution of Kakutani sequences

Let $T \in \mathcal{A}(\mathcal{T}_i)$, say T appears at partition π_{m_0} and is of type r.

The incommensurable case - proof of uniform distribution of Kakutani sequences

- Let $T \in \mathcal{A}(\mathcal{T}_i)$, say T appears at partition π_{m_0} and is of type r.
 - ▶ Let {*I_m*} be as before, and let {*π̃_m*} be the Kakutani sequence of partitions of *T_r* generated by the same scheme.

The incommensurable case - proof of uniform distribution of Kakutani sequences

Let $T \in \mathcal{A}(\mathcal{T}_i)$, say T appears at partition π_{m_0} and is of type r.

- ▶ Let {*I_m*} be as before, and let {*π̃_m*} be the Kakutani sequence of partitions of *T_r* generated by the same scheme.
- For $m > m_0$

$$\frac{|\{x_m \cap T\}|}{|x_m|} = \frac{|\{\text{Tiles} \in \widetilde{\pi}_{m-m_0}\}|}{|\{\text{Tiles} \in \pi_m\}|} = \frac{e^{d(I_m - I_{m_0})}}{e^{dI_m}} + o(1),$$

and since $e^{-I_{m_0}d} = \frac{\operatorname{vol} T}{\operatorname{vol} T_i}$ uniform distribution follows.

The incommensurable case - types and their frequencies

The tile counting formulas and the arguments given above imply additional results for incommensurable schemes:

The incommensurable case - types and their frequencies

The tile counting formulas and the arguments given above imply additional results for incommensurable schemes:

Theorem

Let $\{x_m(r)\}\$ be a marking sequence of tiles of type r in π_m . Then $\{x_m(r)\}\$ is uniformly distributed.

The incommensurable case - types and their frequencies

The tile counting formulas and the arguments given above imply additional results for incommensurable schemes:

Theorem

Let $\{x_m(r)\}\$ be a marking sequence of tiles of type r in π_m . Then $\{x_m(r)\}\$ is uniformly distributed.

Theorem Under the previous assumptions

$$\frac{|\{\text{Tiles of type } r \text{ in } \pi_m\}|}{|\{\text{Tiles in } \pi_m\}|} = \frac{\sum\limits_{h=1}^n q_h \sum\limits_{k=1}^{k_{hr}} \left(1 - \left(\beta_{hr}^{(k)}\right)^d\right)}{\sum\limits_{r=1}^n \sum\limits_{h=1}^n q_h \sum\limits_{k=1}^{k_{hr}} \left(1 - \left(\beta_{hr}^{(k)}\right)^d\right)} + o\left(1\right).$$

Theorem

The volume of the region covered by tiles of type r in π_m is

$$\sum_{h=1}^{n}\left(\sum_{k=1}^{k_{hr}}\left(eta_{ir}^{\left(k
ight)}
ight)^{d}\log\left(rac{1}{eta_{ir}^{\left(k
ight)}}
ight)q_{h}
ight)+o\left(1
ight),\quad m
ightarrow\infty$$

Theorem

The volume of the region covered by tiles of type r in π_m is

$$\sum_{h=1}^{n} \left(\sum_{k=1}^{k_{hr}} \left(\beta_{ir}^{(k)} \right)^{d} \log \left(\frac{1}{\beta_{ir}^{(k)}} \right) q_{h} \right) + o\left(1 \right), \quad m \to \infty$$

Ingredients of proof:

Theorem

The volume of the region covered by tiles of type r in π_m is

$$\sum_{h=1}^{n} \left(\sum_{k=1}^{k_{hr}} \left(\beta_{ir}^{(k)} \right)^{d} \log \left(\frac{1}{\beta_{ir}^{(k)}} \right) q_{h} \right) + o\left(1 \right), \quad m \to \infty$$

Ingredients of proof:

 Results on random walks on directed weighted graph with probabilities assigned to outgoing edges [Kiro, Smilansky×2]. In this model a walker is advancing at a constant speed 1 along the graph, and when arriving to a vertex she chooses an outgoing edge according to the probabilities.

Theorem

The volume of the region covered by tiles of type r in π_m is

$$\sum_{h=1}^{n} \left(\sum_{k=1}^{k_{hr}} \left(\beta_{ir}^{(k)} \right)^{d} \log \left(\frac{1}{\beta_{ir}^{(k)}} \right) q_{h} \right) + o\left(1 \right), \quad m \to \infty$$

Ingredients of proof:

- Results on random walks on directed weighted graph with probabilities assigned to outgoing edges [Kiro, Smilansky×2]. In this model a walker is advancing at a constant speed 1 along the graph, and when arriving to a vertex she chooses an outgoing edge according to the probabilities.
- 2. Special properties of graphs and the relevant probabilities which are associated with substitution schemes.

Back to the red-blue $\frac{1}{3}$ -Kakutani sequence:

2. $\lim_{m\to\infty} \operatorname{vol} \left(\bigcup \{ \operatorname{Red intervals} \in \pi_m \} \right)$

If $\alpha_{ij} = \alpha \in (0, 1)$ for all *i* and *j* the scheme is **fixed scale**.

If $\alpha_{ij} = \alpha \in (0, 1)$ for all *i* and *j* the scheme is **fixed scale**.

Example: The Penrose-Robinson substitution scheme:

If $\alpha_{ij} = \alpha \in (0, 1)$ for all *i* and *j* the scheme is **fixed scale**.

Example: The Penrose-Robinson substitution scheme:

This is the classical setup for **substitution tilings** of \mathbb{R}^d :

The commensurable case - generations sequences

A generations sequence of partitions $\{\delta_k\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme is defined as following:

The commensurable case - generations sequences

A generations sequence of partitions $\{\delta_k\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme is defined as following:

1. The trivial partition $\delta_0 = \mathcal{T}_i$.

The commensurable case - generations sequences

A generations sequence of partitions $\{\delta_k\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme is defined as following:

- 1. The trivial partition $\delta_0 = \mathcal{T}_i$.
- 2. Partition δ_k is defined by substituting all the tiles of in δ_{k-1} according to the substitution rule.
The commensurable case - generations sequences

A generations sequence of partitions $\{\delta_k\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme is defined as following:

- 1. The trivial partition $\delta_0 = \mathcal{T}_i$.
- 2. Partition δ_k is defined by substituting all the tiles of in δ_{k-1} according to the substitution rule.

Theorem

Generations sequences of partitions generated by fixed scale substitution schemes are uniformly distributed.

The commensurable case - generations sequences

A generations sequence of partitions $\{\delta_k\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme is defined as following:

- 1. The trivial partition $\delta_0 = \mathcal{T}_i$.
- 2. Partition δ_k is defined by substituting all the tiles of in δ_{k-1} according to the substitution rule.

Theorem

Generations sequences of partitions generated by fixed scale substitution schemes are uniformly distributed.

Follows from the Perron-Frobenius Theorem for irreducible matrices, and additional standard results on cyclic matrices.

Lemma

Any **Kakutani** sequence of partitions generated by a commensurable scheme is a subsequence of a **generations** sequence of partitions generated by some fixed scale scheme.

Lemma

Any **Kakutani** sequence of partitions generated by a commensurable scheme is a subsequence of a **generations** sequence of partitions generated by some fixed scale scheme.

Lemma

Any **Kakutani** sequence of partitions generated by a commensurable scheme is a subsequence of a **generations** sequence of partitions generated by some fixed scale scheme.

Clearly the Kakutani sequence is not a subsequence of the generations sequence!

Lemma

Any **Kakutani** sequence of partitions generated by a commensurable scheme is a subsequence of a **generations** sequence of partitions generated by **some fixed scale scheme**.

Clearly the Kakutani sequence is not a subsequence of the generations sequence!

Lemma

Any **Kakutani** sequence of partitions generated by a commensurable scheme is a subsequence of a **generations** sequence of partitions generated by **some fixed scale scheme**.

Clearly the Kakutani sequence is not a subsequence of the generations sequence!

The lemma is proved by applying a "slowing down" process.

Let *H* be a multiscale substitution scheme on $\mathcal{F} = (\mathcal{T}_i, \dots, \mathcal{T}_n)$, assumed to be incommensurable, irreducible and normalized.

Let *H* be a multiscale substitution scheme on $\mathcal{F} = (\mathcal{T}_i, \dots, \mathcal{T}_n)$, assumed to be incommensurable, irreducible and normalized.

The family of generating patches

$$\mathscr{P}_i = \{F_t(\mathcal{T}_i): t \in \mathbb{R}_{\geq 0}\}$$

is defined as follows:

Let *H* be a multiscale substitution scheme on $\mathcal{F} = (\mathcal{T}_i, \dots, \mathcal{T}_n)$, assumed to be incommensurable, irreducible and normalized.

The family of generating patches

$$\mathscr{P}_i = \{F_t(\mathcal{T}_i): t \in \mathbb{R}_{\geq 0}\}$$

is defined as follows:

1. At t = 0 the tile T_i is substituted via H.

Let *H* be a multiscale substitution scheme on $\mathcal{F} = (\mathcal{T}_i, \dots, \mathcal{T}_n)$, assumed to be incommensurable, irreducible and normalized.

The family of generating patches

$$\mathscr{P}_i = \{F_t(\mathcal{T}_i): t \in \mathbb{R}_{\geq 0}\}$$

is defined as follows:

- 1. At t = 0 the tile T_i is substituted via H.
- 2. As t increases, the patch is inflated by e^t .

Let *H* be a multiscale substitution scheme on $\mathcal{F} = (\mathcal{T}_i, \dots, \mathcal{T}_n)$, assumed to be incommensurable, irreducible and normalized.

The family of generating patches

$$\mathscr{P}_i = \{F_t(\mathcal{T}_i): t \in \mathbb{R}_{\geq 0}\}$$

is defined as follows:

- 1. At t = 0 the tile T_i is substituted via H.
- 2. As t increases, the patch is inflated by e^t .
- 3. Tiles are substituted via H as soon as they reach volume 1.

Let *H* be a multiscale substitution scheme on $\mathcal{F} = (\mathcal{T}_i, \dots, \mathcal{T}_n)$, assumed to be incommensurable, irreducible and normalized.

The family of generating patches

$$\mathscr{P}_i = \{F_t(\mathcal{T}_i): t \in \mathbb{R}_{\geq 0}\}$$

is defined as follows:

- 1. At t = 0 the tile T_i is substituted via H.
- 2. As t increases, the patch is inflated by e^t .
- 3. Tiles are substituted via H as soon as they reach volume 1.

The **tiling space** X_H is the space of all tilings τ of \mathbb{R}^d with the property that every patch of τ is a limit of translated sub-patches of elements of $\mathscr{P} = \bigcup \mathscr{P}_i$.

Let *H* be a multiscale substitution scheme on $\mathcal{F} = (\mathcal{T}_i, \dots, \mathcal{T}_n)$, assumed to be incommensurable, irreducible and normalized.

The family of generating patches

$$\mathscr{P}_i = \{F_t(\mathcal{T}_i): t \in \mathbb{R}_{\geq 0}\}$$

is defined as follows:

- 1. At t = 0 the tile T_i is substituted via H.
- 2. As t increases, the patch is inflated by e^t .
- 3. Tiles are substituted via H as soon as they reach volume 1.

The **tiling space** X_H is the space of all tilings τ of \mathbb{R}^d with the property that every patch of τ is a limit of translated sub-patches of elements of $\mathscr{P} = \bigcup \mathscr{P}_i$.

Elements of X_H are called **multiscale substitution tilings**.

H		Ŧ	
		E	
	П		

	-	Н	┥	_	
Н	-		B		
		щ	Ц		
Р	Т	ш	⊢	-	_

		Г	
	┨	 ł	
	Τ	L	
	Τ		

We show for example:

• Every $\tau \in X_H$ is almost repetitive.

- Every $\tau \in X_H$ is almost repetitive.
- The dynamical system (X_H, \mathbb{R}^d) is **minimal**.

- Every $\tau \in X_H$ is almost repetitive.
- The dynamical system (X_H, \mathbb{R}^d) is **minimal**.
- Tilings $\tau \in X_H$ are **not BD equivalent** to a lattice.

- Every $\tau \in X_H$ is almost repetitive.
- The dynamical system (X_H, \mathbb{R}^d) is **minimal**.
- Tilings $\tau \in X_H$ are **not BD equivalent** to a lattice.
- ► Various asymptotic frequencies of tile types and scales.

- Every $\tau \in X_H$ is almost repetitive.
- The dynamical system (X_H, \mathbb{R}^d) is **minimal**.
- Tilings $\tau \in X_H$ are **not BD equivalent** to a lattice.
- ► Various asymptotic frequencies of tile types and scales.
- Many more beautiful properties! Coming soon...

